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This state-of-the-art-paper is a resumé of research activity of a non-formal Research Group on Artificial
Neural Networks (RGANN) applications in Civil Engineering (CE). RGANN has been working at the
Cracow University of Technology, Poland, since 1996 under the supervision of the author of this paper.
Ten years 1996–2005 of the research and teaching activity of RGANN was reported in paper [61]. The
present paper briefly reports on the activities originated in the ten year period and their continuation after
2005. The main attention is focused on new research carried out in the five year period 2006–2011. The
paper discusses some selected problems which are included in fourteen supplementary papers, marked in
references of these papers as published in this CAMES Special Issue.
The attention is focused on: Hybrid Computational Systems, development of modifications of ANNs

and methods of their learning, Bayesian neural networks and Bayesian inference methods, damage iden-
tification in CE structures, structure health monitoring, applications of ANNs in mechanics of structures
and materials, joining of ANNs with measurements on laboratory models and real structures, development
of new non-destructive measurement methods, applications of ANNs in health structure monitoring and
repair, applications of ANNs in geotechnics and geodesy. The paper is based on the supplementary papers
which were presented at the Special Session on Applications of ANNs at the 57th Polish Civil Engineering
Conference in Krynica, 2011, see [74].
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Perceptron (MLP), Fuzzy Weight NN (FWNN), Kalman Filtering (KF), Bayesian NN (BNN), True-BNN
(TBNN), Semi-Bayesian NN (SBNN), Gaussian Process (GP), Recurrent Cascade NN (RCNN), Principle
Component Analysis (PCA), Hybrid Computational System (HCS), Finite Element Method (MES), Em-
pirical Data (EMP), Hybrid Monte Carlo Method (HMCM), Hybrid Updated Algorithm (HUA), Neural
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1. INTRODUCTION

In years 1996 and 1997, an informal research group and a standing seminar on applications of
artificial neural networks in civil engineering, called RGANN and SemANN for short, started at
the Institute of Computer Methods in Civil Engineering (now Institute of Computational Civil
Engineering) of the Cracow University of Technology. The RGANN and SemANN gathered partic-
ipants of seven South Poland universities of technology under the supervision of the author of this
paper. Owing to the participants’ enthusiasm, besides research and teaching, also publishing of new
scientific results and their presentation at many scientific conferences and congresses took place.
A state-of-the-art paper [61] was published in 2006, in which the main results obtained in ten

years period 1996–2005 of RGANN and SemANN were discussed. The attention was focused on five
areas: i) ANN as a new independent computational tool for the analysis of civil engineering (CE)
problems, ii) analysis of various topics of CE applying ANNs, iii) hybrid systems with interaction
of two components, i.e. finite element method and ANNs for the analysis of large problems in CE
(FEM/ANN in CE), iv) modifications of standard NN architectures and development of methods
for their learning, v) teaching and promotion of ANNs. In [61] six selected study cases were quoted
to illustrate new results obtained in years 1996–2005.
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Besides the above listed problems, some new approaches were developed in the first ten years of
activities, which have then been continued over another five year period 2006–2011. This concerns
especially topics of Ph.D. Theses and D.Sc. monographs (Polish upper scientific level dissertations,
called “habilitations”). They were related to various applications of ANNs to the analysis of direct
and inverse problems and development of hybrid computational systems. At the end of the first
research period the ANNs were also applied in the analysis of structure health prediction and
applications of neural networks in selected problems of geotechnics and geodesy.

2. GENERAL REMARKS ON RESEARCH IN YEARS 2006–2011

The activities of RGANN and SemANN have been slightly reorganized since their supervisor,
prof. Z. Waszczyszyn after his retirement, accepted the position of full professor at the Rzeszów
University of Technology. That is why he was also able to cooperate closer with Prof. L. Ziemianski’s
research group. SemANN has continued its activity at the Cracow University of Technology. The
present paper is devoted to the next five years 2006–2011 of RGANN and SemANN activities. The
paper was written in an extended form as the fist one in a cycle of papers presented at the Special
Session on ANNs in CE at the 57th Polish Civil Engineering Conference in Krynica Poland in 18–22
September, 2011.
The paper deals with general activities that were proceeded by RGANN and SemANN in the

last ten years. It is supplemented by fourteen papers published in the presented CAMES Special
Issue following the papers delivered at the 57th Krynica Conference. That is why, inlike to paper
[61], besides references to the above mentioned fourteen papers, only some distinguished basic
approaches, developed in recent years, are discussed in short.
The activities after 2005 can be roughly divided into two groups:

1. Continuation of research, teaching and promotion of ANN applications in CE, which started in
the previous ten year period.

2. New research, teaching and promotion of ANNs, which have been developed after 2005.

3. CONTINUATION OF ACTIVITIES ORIGINATED IN PREVIOUS TEN YEARS 1996–2005

3.1. D.Sc.E. monographs and Ph.D. Theses

Two D.Sc.E. monographs, written by Pabisek [41] and Sulewska [53] were published after 2005.
Eight Ph.D. Theses, quoted here in chronological order, were written and “defended” after 2005
by Mrówczyńska [34], Kaczmarczyk [14], Krok [19], Buda-Ożóg [4], Jakubek [12], Nazarko [38],
Wojciechowski [70] and Borowiec [3].

3.2. Analysis of regression problems

Without any doubt, ANNs appeared to be an efficient new tool in the analyses of classification
and regression problems. From the very beginning, the members of RGANN and SemANN focused
their attention on the analysis of regression problems in CE.
The regression problems are related to mapping of input vectors xp = {xpj}Dj=1 for p = 1, . . . , P

patterns onto output vector functions y(x;w) = {ym(x,w)}Mm=1, where: w = {wi}Wi=1 – weight
vector of ANN model.
ANNs can be formulated for the analysis of various regression problems. This can de performed

specifying the input/output data according to Paez classification [47], shown in Table 1 for me-
chanical systems (MS).
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Table 1. Mechanical system problems and relevant data.

Problems Inputs Outputs

A. Mechanical system (MS) response
simulation

Excitation variables and system
parameters

Response variables

B. MS excitation simulation (identifica-
tion)

Response variables and system pa-
rameters

Excitation variables

C. MS parameter identification MS excitation and response vari-
ables

Parameters of MS

D. MS excitation and/or response as-
sessment

All relevant measures of system
conditions to be assessed

Assessment of system
conditions

Simulation problem A refers to problems called in mathematics direct problems. Problems B
and C are related to inverse problems. In engineering problems, the inverse analysis is connected
especially with design problems, which are frequently analyzed as a sequence of simulations.
As was discussed in the state-of-the-art-papers [68, 69], inverse problems B (called external

identification) and problem C (called internal or material model identification) can be efficiently
analyzed by the standard neural network (SNN). In these networks the Least Square error ELS (w)
is adopted:

ELS(w) =
1

2

P∑

p=1

{tp − y(xp;w)}2, (1)

where for the sake of clarity only the single output network with a target data set {tp}Pp=1 is applied.
SSNs suitable for the regression analysis are, first of all, the feed-forward neural networks either

of layered structure or related to the Radial Basis Function Neural Networks (RBFNs). The layered
NN called in [11] Multi-Layred Perceptron (MLP) were favourably applied in RGANN and SemANN
research. After 2005 the interest in RBFNs started, mainly because of their applications in Bayesian
computational systems, see Subsec. 4.1.
A great deal of attention was also paid to the application of Paez’ classification and formulation of

appropriate input/output data in the analysis of complex problems. This can need the formulation
of hybrid computational systems (HCS). Such systems have been developed since the beginning of
the previous ten year research period, see [43, 61] and it has been extensively continued after 2005.

3.3. Hybrid computational systems

3.3.1. General remarks

A great deal of attention has been paid to hybrid computational systems (HCSs). Such systems
are composed of components of different and reciprocal features. Let us consider the component,
corresponding to the finite element method (FEM), which is extremely efficient in the analysis of
direct problems. In case the second component is an ANN, then we can compose a HCS, whose
components can interact with each other in the analysis of complex problems. The component
FEM is based on hard computing, vs. ANN supported on neurocomputing. Such features open
the door for increasing the numerical efficiency of the FEM&ANN system of co-called low degree
of component fusing, cf. [41]. This system is usually formulated of separate parts corresponding
to FEM and ANN, which enable the application of ‘off line’ computational technique. In case the
ANN is inside FEM, then the ‘on line’ technique can increase significantly the numerical efficiency.
Such a system will be written in the form FEM/ANN, corresponding to a high degree of component
fusion, cf. e.g. [41].
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In years 2006–2011 a special attention was focused on three component HCS identification
problems, related to Paez’ cases B and C (cf. Table 1). In full identification problems, besides
computational components FEM and ANN, component EMP has to be added. It corresponds
to empirical data related to a set of measurements on different levels of real structures or in
laboratory tests. In general HCS of different structures should fit well the analyzed engineering
problems.
HCS components can serve different purposes. In case of full identification, the EMP component

can be formulated as pseudo-empirical data p-EMP, computed usually as a computer simulation of
real measurements. Such simulations can be very useful to start with a HCS before tests or even
to plan tests on real structures or laboratory models. In case of internal identification (case C in
Table 1) the component EMP can be exploited for calibration of internal parameters, e.g. values of
material characteristics.
In case we have no measurements on physical material models we can simulate p-EMP by

theoretical models well certified by tests on laboratory specimens or structural elements. Models
of materials, solids and soils, formulated in the theory of elasticity or plasticity, are a good exa-
mple.
In the research carried out in 2006–2011 two types of HCS were developed, i.e. FEM&SNN&EMP

and FEM/SNN/EMP. The first system is of low degree of component fusion vs. FEM/SNN/EMP
which is of high degree of fusion, cf. [41].

3.3.2. Problems analyzed by HCS

Hybrid Monte Carlo Method in reliability analysis of structures. In her Ph.D. Thesis,
“defended” in 2005, [16], J. Kaliszuk analyzed a number of problems related to the reliability
analysis of simple CE structures. Two of them, i.e. load carrying capacity of a steel girder beam
and circular panels were presented at scientific conferences after 2005. The extended supplementary
paper [17] discusses in detail the application of the Hybrid Monte Carlo Method (HMCM) proposed
in [46] to the analysis of the above mentioned problems. Two HCMs were formulated in the form
FEM/SNN and FEM/SNN/EMP.
The simulation regression algorithm was supported on HMCM, in which FEM was based on the

geometric material nonlinear models of structures and materials in order to compute the ultimate
load parameter λult(X), corresponding to overall buckling of structure, where: X – random input
parameters related to structure and material. A small set of computed FEM solutions {Xp, tpult }Pp=1

was adopted for the design and training of small SSNs, which were applied to computations of Monte
Carlo trial as the mapping X → λult. In the reliability analysis of a steel girder and cylindrical
panels the FEM code COSMOS-D was applied. In the case of panels the code was updated by
means of tests on laboratory models, see [18]. It was proved that such a hybrid approach enables
the computation of the structure reliability curves in CPU times significantly lower than those that
could be obtained hypothetically by the application of the FE code only.
Updating of simple structures. In the Ph.D. Thesis [31], written by B. Miller, a Hy-

brid Updating Algorithm (HUA) was formulated as the HCS of low degree of component fusion
FEM&ANN&EMP. The HUA was composed of five stages, cf. supplementary paper [32].
The HUA starts from a direct analysis, similarly to the approach mentioned above in the Hybrid

Monte Carlo Method (HMC). The mapping α → r is carried out as a direct analysis by means of
FEM, where: α – vector of control parameters, r – vector of structure responses. Then an artificial
noise is added to the response set of patterns {rp′}P ′

p=1, which becomes the input set for the inverse
analysis {rp′}P ′

p=1 → αANN. Having measured responses {rm}Mm=1, it is possible to calibrate the
control parameters αident = αANN({rm}). The vector of identified control parameters αident is
substituted to the FEM code in order to have an updated program FEMupd.
The above mentioned hybrid updated algorithm was developed by Miller in [31–33]. He discussed

two problems, corresponding to laboratory simple models, made of aluminum alloys, i.e. a thin-
walled suspended beam and a two-story plane frame. In the former problem two internal parameters,
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corresponding to an additional mass density ρeL and shear correction factor ks were adopted as
control parameters. They were identified by means of HUA also for damaged beams. The other
example was related to the updating of a FEMupd code to predict correctly some of the first
eigenfrequencies of the laboratory tested frame. Stiffness of additional springs and the length of
an equivalent supporting FEs were adopted as control parameters. It was numerically proved that
the application of the proposed algorithm HUA gave computational predictions very close to that
measured on the laboratory tests.
Identification of equivalent materials in real structures and solids. In her DScE. mono-

graph [41], E. Pabisek discussed various HCS. In recent five years she has focused on development
of FEM/SNN/p-Emp systems of a very high degree of component fusion. The main research goal
was to formulate HCS for the identification of equivalent material models in solids, called Neural
Material Models (NMMs). The models are made of unknown ‘a priori’ material (e.g. material of
real structures), corresponding to measurement data completed in the component EMP or p-EMP.
The main attention was paid to development of the Ghaboussi’s Autoprogressive Method (AM),
see [7, 8, 10].
The main idea of AM lies in ‘on line’ computations of patterns for SNN learning, training and

updating, as well as fulfilling the compatibility conditions by means of measurement (or pseudo-
measurement) data, completed in the EMP component. In papers [42, 43] two algorithms of AM
were discussed. The first one, called algorithm A, fully corresponds to the Ghaboussi’s autoregressive
method, proposed in [7], then discussed in many papers, cf. references in [8]. This algorithm depends
on updating the patterns and training NMM at each step n of the load parameter increment n∆λ.
The other algorithm, B (called in [42, 43] cumulative algorithm) corresponds to the learning of
NMM at the last load increment, i.e. once for each load cycle c. This algorithm was introduced by
Shin and Pande in papers [51, 52]. Both algorithms have their advantages and disadvantages, see
discussion in [42, 41].
In Pabisek’s D.Sc. monograph [41] some identification plane stress BV problems were analyzed.

The p-EMP equilibrium paths were simulated for materials depending on the J2 stress deviator
(mainly steel and aluminum alloys elements). For such materials algorithm A seemed to be superior.
In the supplementary paper [44] the identification of sand soil was discussed. The soil plasticity
model, proposed by Drucker and Prager, was adopted to obtain pseudo-empirical data p-EMP.
This material is pressure dependent, so besides the stress deviator invariant J2 also the stress
tensor invariant I1 has to be taken into account. After a number of computational experiments it
was stated that in the HCS identification algorithm B was more advantageous than algorithm A. An
interesting new result was presented in [44]. This concerns a possibility of the NMM identification
on a sub-domain of the investigated BV plain stress problem, related to the superficial foundation
on a semi-plane.

3.4. Development of ANNs and learning methods

3.4.1. Fuzzy Weight Neural Network

Before 2005 a fuzzy neural network called FWNN (Fuzzy Weight Neural Network) was developed
by Pabisek, Jakubek and Waszczyszyn, see [45] . Membership functions of FWNN were formulated
by the MLP network training, separately for each learning pattern and then the interval arithmetic
was applied to process crisp or fuzzy data.
FWNNs were applied by Jakubek in her Ph.D. Thesis [12] for selected problems of material

and structural mechanics related to evidence of laboratory tests. The following three problems
are discussed in the supplementary paper [13]: 1) simulation and parametric identification of the
strength and number of fatigue failure cycles of normal concrete specimens, 2) strength prediction
of high performance concrete mixtures, 3) identification of buckling loads of eccentrically loaded
reinforced-concrete columns.
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3.4.2. Kalman neural filtering

Kalman filters (KF) are widely applied in the analysis of dynamic linear processes. In A. Krok’s
Ph.D. Thesis [19] KF extended and decoupled equations were used in the nonlinear analysis of
material and structure problems with sequential data. These equations were adopted as a base for
formulating a new method for MLPs learning.
From among many problems discussed in [19] the problem of simulation of hysteretic loops

for twelve tests on compressed concrete specimens are discussed in the supplementary paper [20].
Additionally, the application of the Gaussian Process and model calibrated by Genetic Algorithms
is discussed. The best approximation was obtained by means of Bayesian methods.

3.4.3. Replicator neural network

A great number of inputs can influence significantly the size of designed SNNs (size means here
the number of SNN weights). This problem can be of importance for small data sets. That is why
the problem of reduction of the input space dimensionality D without losing relevant information,
might be important for SNNs formulation.
One of possible methods of reduction of D is the application of the autoassociated MLP, called

replicator, see [11]. This approach was introduced into structural dynamics by Lin and Ghaboussi,
see references in [8, 28]. The replicator is a two layer autoassociated MLP of structure D-d-D,
where: D – number of inputs/outputs, d < D – number of hidden neurons, corresponding to the
number of reduced inputs, see Fig. 1 taken from [68]. The data compression and decompression are
also shown in Fig. 1. It corresponds to the mapping x(D×1) → x̃(d×1) → x̂ = x− ε, where x̃ ∈ Rd

– compressed input vector, ε – error of the replicator learning process.

a) b) c)

Fig. 1. a) MLP as a replicator, b,c) splitting of replicator into compressor and decompressor.

Before 2005 the replicator was used in the buckling analysis of cylindrical shells, see [63] and in
the analysis of several structural dynamics problems, cf. [24]. After 2005 the replicator was applied
in damage classification, see [40]. Instead of replicators the Principle Component Analysis was
widely applied in the recent research period 2006–2011, see Subsubsec. 4.2.1.

3.5. SNNs for analysis of building vibrations

Since the very beginning of research activity of RGANN and SemANN, the problems of mine-
induced building vibrations attracted a great deal of attention of participants of the two groups.
This was related to the research activity of Kuźniar, reflected in her D.Sc.E. monograph [23],
Chapter XVI in book [26, 27] and supplementary paper [24].
The following four groups of problems were discussed in [24]: 1) prediction of building fundamen-

tal period of natural vibrations, 2) mapping of mining tremors into response spectra from ground
vibrations, 3) soil-structure interaction analysis, 4) simulation of building responses to paraseismic
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excitations. A deal of attention was focused on the input data preprocessing and application of
replicators, especially before 2006.

3.6. Damage detection in structure health analysis and laboratory tests

A great deal of efforts was spent on the identification of damage in structural elements and solids.
Starting from Łakota’s D.Sc. monograph [29] written in 1999, the book by Ziemiański [72] and

many papers by him and his coworkers from the Rzeszów University of Technology can be quoted,
see references in the state-of-the-art-papers [69, 73]. The investigated problems were related to
identification of loads, material parameters, damage localization in structure elements and simple
structures (beams and plane frames).
Two basic approaches were adopted. The first one was based on adoption of measurements or

computer simulations of eigenfrequencies as structures responses, see references in [68, 69, 72, 73].
The other approach was the analysis of transmission and reflections of ultrasonic elastic waves in
elastic strips and continua [38–40, 68, 72]. This approach was extensively developed in recent years
in order to formulate new non-destructive methods for diagnosis and monitoring of materials and
structures in CE, in the frame of areas called Structure Health Analysis and Monitoring (SHA&M).
Parallel to the development of theoretical foundations tests on laboratory models were contin-

uously carried out. Lakota’s experimental activity was continued by Miller, Piątkowski, Nazarko,
Buda-Ożóg and Borowicz, see their Ph.D. Theses [3, 4, 31, 38, 49] and supplementary papers
[32, 40].
After 2005 P. Nazarko started with his research directed to formulation of tests on non-

destructive methods for the diagnosis of structural members damage. His Ph.D. Thesis was “de-
fended” ‘cum laude’ and published as monograph [39]. The analysis of patterns carried out is based
on transmission of waves in elastic strips. Structural Health Monitoring is discussed in the sup-
plementary paper [40] by Nazarko and Ziemiański. A two stage hybrid approach ANN&EMP was
discussed therein. The damage measurements were classified by means of a replicator and then MLP
was applied to the identification of damage location and estimation of its geometrical parameters.

4. NEW RESEARCH AFTER 2005

4.1. Bayesian Neural Networks

In years 2005–2006 M. Słoński turned his attention to the books written by Bishop [1, 2], devoted
to the Bayesian Neural networks (BNNs). They are in fact a kind of refined systems, in which
Bayesian inference was introduced into ANNs interface. Standard NNs can be obtained as a special
case of BNNs.

4.1.1. Bayesian inference

Bayesian inference is based on Bayes’ theorem, see [1, 2, 67]:

p(w|t, α, β) = p (t|w, β)p(w|α)
p(t|α, β) , (2)

which can be verbalized: posterior = likelihood × prior/evidence. The evidence has the form of
integral expressing the marginalization (elimination) of the random weight function w ∈ RW :

p(t|α, β) =
∫

RW

p(t|w, β)p(w|α)dw. (3)
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The evidence (called also the marginal likelihood) can be computed numerically as the integral
over all weight vector components in the weight space RW . In formulas (2) and (3) conditional
probabilities p are applied, which can be verbalized. For instance, p (w|A) means “probability w
given A”. In other words, this means that the random vectors w and t in (2) are conditioned by
the target vector t and hyperparameters α and β in (3).
The Bayesian inference corresponds to an improvement of prior by means of additionally con-

ditioned data. In case of Bayes’ theorem of form (2) the probability of posterior for the weight
vector w is conditioned not only by information concerning the prior (given hyperparameter α
conjugated with w) but also by the target vector t and hyperparameter β conjugated with the
output data set.

4.1.2. Bayesian networks and their approximations

The computation of integral in evidence (3) is analytically intractable so the main problem of
application of the Bayes’ theorem lies in numerical computation of the integral (3). This corresponds
to the marginalization (elimination) of the weight function w.
The numerical integration procedures are computationally very costly (they need a great number

of operations) in cases when the weight space RW is multidimensional. That is why, besides so-
called True Bayesian NNS (TBNNs), in which numerical integration is carried out, a number of
simplified approximations of BNN were developed, see [2, 67]. From among them the Semi Bayesian
NNs (SBNNs) and Gauss Process in regression (GP) networks are particularly worth of attention.

4.1.3. Semi Bayesian Neural Networks and Bayesian methods

These networks are of the standard neural networks structure, but the extended network error
function F (w; α, β) is applied. It contains the terms corresponding to the Least Squared error ELS
and regularization penalty term EW, weighted by the hyperparameters α and β:

F (w;α, β) = αELS(w) + βEW ≡ α

2

P∑

p=1

{tp − y(xp;w}2 + β

2
wTw, (4)

where for the sake of clarity only the single output network with a target set {tp}Pp=1is applied.
In what follows only the network of MLP structures with the extended error function (4) are

applied in SBNN. Such a network is marked as SSN/MAP networks in [67], with the acronym
corresponding to the Bayesian methods, see below.

Computation of number of neurons in hidden layer
of SBNN and hyperparameters

The main feature of SBNN is that it is designed and the hyperparameters are learned by means of
Bayesian methods basing on the MML (Maximum Marginal Likelihood). MML is briefly described
in the Appendix to paper [21] written by Kłos, Sulewska and Waszczyszyn.
Marginal likelihood is defined as the denominator in Bayes’ theorem, corresponding to the inte-

gral (3). The MML criterion can be consistently expressed as:

max
w

lnML ≡ max
w

p(t|α, β) → Hopt, (5)

written for the single hidden layer composed of H neurons. Appropriate formulas can be found in
the books [1, 2, 67] and in the Appendix of the supplementary paper [21].
A great advantage of criterion MML is that Hopt can be computed having only the learning set of

patterns. This means that this criterion can be used instead of the commonly used cross-validation
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method but without an additional validation set of patterns. This was emphasized by Waszczyszyn
and Słoński in papers [65, 66] written in Polish and English.
It is worth mentioning that the criterion MML has been known in literature devoted to BNNs

since about 1992, cf. [30], but it has not been applied to the design of non-Bayesian NNs.
Maximizing the function lnML = p(t|α, β) with respect to hyperparameters leads to the follow-

ing relations:

max
α

lnML→ αopt, max
β

lnML→ βopt. (6)

Similarly as in (5), the appropriate formulas for computations of hyperparameters can be found
in the above quoted literature.
Formulas (6) are of recurrent type and need estimation of initial values αin and βin. In the book

by Nabney [37] the procedure EVIDENCE was given for the computation of parameter Hopt and
hyperparamters αopt and βopt.

4.1.4. Gaussian Process model

Besides SBNN the Gaussian Process model (GP) is worth mentioning. GP is related to the in-
terpolation of Radial Basis Function NN, in which centers of BFs are placed at input pattern
points. In case of GP the kernels function k (xp,xr) is applied instead of classical RBFs, see [2]
and supplementary paper [59] written by Słoński. The predictive distribution of mean in the Gaus-
sian probability density for a new input vector xp+1 is y(xp+1) = kTC−1k. The covariant matrix
C(P×P ) is composed of components Cpr = k(xp,xr) + (1/σ2), where the standard error σ of the
input set was introduced, cf. [2]. In the group of kernel methods the above sketched approach is
called Gaussian Process Model, see [2], the GP-BNN in [67].
GPM is formulated without a vector of weights w. Thus, the main computational effort is related

to the inversion of the covariant matrix, to have C−1
(P×P ), since the inversion of matrix C can be

computationally very costly in case of a large number of P .

4.1.5. Applications of Bayesian neural networks in problems analyzed after 2005

Bayesian Neural Networks (BNNS) were applied to a number of problems analyzed by RGANN
and discussed at SemANN sessions. The basic questions were related to the accuracy and numerical
efficiency vs. those provided by standard ANNs. In the-state-of-the-art paper [67], the attention
was turned to formulation of different Bayesian networks and methods, especially to so-called Semi
Bayesian NN (SBNN). Also the Gaussian Process model (GP) is worth emphasizing, see [59],
because of its simplicity and accuracy. Another general remark is that it was numerically proved
that the True BNN (TBNN) networks can be numerically costly in the sense of a very high CPU
times.
The general conclusions expressed above were verified on examples of BNNs applications to

the analysis of several problems of mechanics. At the beginning, the simulations of displacement
response spectra of buildings subjected to paraseismic excitations were analyzed and reported in
[64, 67]. Then a great deal of attention was paid to selected problems of concrete mechanics.
Prediction of the strength of high performance concrete and normal concrete fatigue failure were
investigated by Słoński by means of various types of Bayesian neural networks and methods, see
[55–59]. The Bayesian methods were also applied by Krok in paper [20] to the numerical prediction
of the hysteresis loops of compressed concrete.
The True BNN was applied by Kaczmarczyk and Waszczyszyn in paper [15] to the identification

of a material internal parameter and evaluation of sigma-bar region for this parameter.
SBNNs are now a standard tool for neurocomputing analyses carried out at the Rzeszów TU,

Poland. SBNNs were applied in hybrid computational systems developed for structure health mon-
itoring, see [32], and a number of identification problems related to structural mechanics and soil
compaction, see papers [21, 22].
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4.2. Data processing and development of ANNs

4.2.1. Principle Component Analysis

In Subsubsec. 3.4.3 the application of replicator to the reduction of input space dimensionality was
discussed. The replicator was formulated as an autoassociated neural network of architecture MLP:
D-d-D applied to the mapping x(D×1) → x̂(D×1) = x− ε, see Fig. 1.
Instead of application of replicator we can use the Principle Component Analysis (PCA). We

start from formulation of the pattern xp(D×1) correlation matrix S(D×D) =
∑P

p=1 x
p(xp)T/P . Then

eigenvalues and eigenvectors of S are computed (λj , qj). The eigenvalues are arranged in a decreas-
ing order λ1 ≥ λ2 . . . ≥ λd . . . ≥ λD and the dth highest value defines the compressed dimension
of the input subspace Rd < RD. It can be easily proved that the vector of principle components
can be explicitly written as ξ(d+1) = Q

T
(d×D)x(d+1) and the reconstruction vector is x = Qξ. The

approximation error vector can also be explicitly computed as E =
∑D

j=d+1 ξjqj.
The above written a short resumé enables us to highlight the superiority of the PCA over the

application of replicator neural network. The first advantage is the explicit formula for estimating
the number of conserving eigenvalues d of the correlation matrix, which defines the number of
compressed inputs. Without any additional learning procedures, corresponding to the replicator,
we can explicitly compute the truncation error E. Due to storing of the eigenpairs (λc, qc)

d
c=1 we

can explicitly reconstruct components of the inputs xpj .
The advantages listed above caused the replicator to be changed into the PCA. Such a way of

reducing the input space dimensionality has been shown in the current literature, see e.g. [2]. In
2006 the PCA was applied in paper [25] written by Kuźniar and Waszczyszyn. In the paper PCA
was applied in a simple problem of prediction of the basic eigenfrequencies of small buildings.
An original application of PCA was proposed by Kaczmarczyk and Waszczyszyn in paper [15].

An internal material parameter at the microlevel was identified and by means of PCA where the
transition for the unidimensional input space d = 1 was possible. It enabled us to apply efficiently
the True BNN.
It was also shown in paper [22], written by Kłos and Waszczyszyn that the PCA transformation

of ten inputs gave a satisfying improvement of the network SBNN accuracy for the identified
compaction parameters without a compression of the input data.

4.2.2. Recurrent Cascade Neural Network (RCNN)

In literature the Cascade Neural Network is known as a modification which changes the network
MLP: D-H-M into M cascade of networks CNN-l with single outputs at levels l = I, II, . . . , M ,
cf. [68]. In Fig. 2a the two networks are shown with single outputs in 2D space, i.e. M = 2 and
CNN-I(1): D-H-y(1)1 and CNN-II

(1): (D+ y
(1)
1 )-H-y(1)2 . In paper [22] this set of networks was called

Standard CNN, corresponding, in fact, to the first cycle or recurrence k = 1. Figure 2b illustrates an
extension of the SCNN, called in [22] Recurrent CNN. For the sake of simplicity only two outputs
are considered. It is valid for the recurrence cycles k > 1 so that at both levels the networks are of
architecture (D + 2)-H-1.
The network RCNN corresponds to Jordan type networks with single outputs, cf. [48], see Fig. 2c.

The network is composed of the context unit and input unit. The context unit has only inputs with
self feedback outputs. Thus, the behavior of the context unit corresponds to the recurrent type
network. For prediction (testing) process the RCNN (and, especially, the context unit) depends
on finding stable solutions for fixed values of weights, computed in the frame of the supervised
learning.
The above mentioned problems are discussed by Piątkowski and Waszczyszyn in the supple-

mentary paper [50], where the control parameters correspond to the identified locations of a mass
attachment to a plate. In [50] it was stated that because of self feedbacks the recurrence itera-
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a) b) c)

Fig. 2. a) Cascade Neural Network (CNN) for the recurrence cycle k = 1, b) Recurrent Cascade Neural
Network (RCNN) for k > 1, c) RCNN as a modification of Jordan neural network.

tion process can be inaccurate or even divergent. This defect of the algorithm has been partially
overcome by the introduction of a barrier bound.
The investigated problem turned out to be much more complicated than that analyzed in [22].

The identification of three geometrical parameters of circular arches needed only K = 3 iteration
cycles for satisfactory identification of the arch parameters. The recurrent iteration was convergent
with the expected values also for artificial noises added to eigenfrequencies, computed by FEM
as the arches dynamic responses. In case of identification of the localizations of mass attachment
by means of measurement data, investigated in [50], the recurrent iteration needed up to K = 20
recurrence. The other problem was that the testing process is related to the non-supervised learning
and the introduction of the barrier bound. Such an approach needs to be further investigated in
order to fulfill all conditions of objective identification.

4.3. ANNs in geotechnical problems

In the supplementary paper [54] Sulewska presented a great interest in ANNs applications in
geotechnical problems. She pointed out the following six selected problems: 1) prediction of the
Overconsolidation Ratio, 2) estimation of potential soil liquefaction, 3) prediction of foundation
settlement, 4) evaluation of piles bearing capacity, 5) prediction of cohesive parameter for cohesive
soils, 6) compaction built of cohesionless soils.
After 2005 the problems of soil compaction were extensively developed by Sulewska in her D.Sc.

monograph [53]. She applied MLP neural networks for prediction and identification of compaction
parameters for cohensionless soils. The investigations were based on measurements carried out by
means of the Dynamic Probe Light (DPL) tests. The superiority of the MLP applications over the
standard statistical methods has been numerically proved with respect to applications of DPL and
MLPs in the surface soil layers. New results were also obtained applying MLPs to the identification
of compaction parameters basing on the Proctors test.
The last mentioned problem was investigated by Kłos, Sulewska and Waszczyszyn and new

results are presented in the supplementary paper [21]. Semi Bayesian NNs were applied to the
identification of compaction characteristics basing on the Proctors tests for postglacial sands of
North-East Poland. The hybrid system EMP&SBNN was formulated. Besides application of the
Bayesian methods mentioned in Subsubsec. 4.1.3, the PCA method was also applied in input data
preprocessing. It was stated that the application of the PC transformation can improve the accuracy
of BSNN networks without performing data compression.
The supplementary paper by Wojciechowski [71] concerns the development of a hybrid approach

to the problem of soil parametric identification in deep excavation. This problem, originated in
Wojciechowski’s Ph.D. Thesis [70], was related to the application pf ANNs for quick simulation
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of numerical patterns in direct analysis. The simulation of selected response displacements, as
functions of the identified soil parameters, was used in a mathematical programming method for
optimal identification of these parameters.
Once more, the application of the hybrid computational system FEM/MNN/p-EMP by Pabisek

in her supplementary paper is worth mentioning [44]. In the system a neural procedure for the iden-
tification of an equivalent material model for grain soils was adopted in the form of the Material
Neural Network model (MNN). The development of a hybrid system and introduction of measure-
ment carried out ‘in situ’ on real soils might open the door to new non-destructive methods for
modeling real soils without costly laboratory tests.

4.4. ANNs in geodesy

Mrówczyńska’s Ph.D. Thesis [34] deals with new possibilities of ANNs in geodesy. As a successor of
Prof. J. Gil, see [9], she has applied different ANNs in the analysis of various problems of geodesy.
In the supplementary paper [35], she applied the Suzuki-Sugeno-Kang fuzzy system, then MLP,
Radial Basis Function NN and RCNN to the analysis of the following three problems: 1) digital
approximation of terrain problems, 2) transformation of the Polish system coordinates “1965” into
the official system “2000”, 3) prediction of time series for point displacements using the GPS-RTK
technique.

4.5. Advisory system for industrial floors repairs

In the supplementary paper [6] Gajzler formulated an expert system for classification of defects
and application of appropriate repairs of industrial floors. An original idea was introduced into
the system concerning the application of modified MLPs in the interference engine to classification
purposes of formulation rules in the knowledge base.

4.6. Promotion of ANNs after 2005

Papers with recent new research results obtained by RGANN members were presented at a number
of Polish and foreign scientific conferences and congresses. The main topics of the corresponding
papers are reflected in the supplementary papers published in this Special Issue of CAMES. Such
papers seem to be an important contribution for promotion of ANNs as a new tool for analyzing
of complex engineering problems. The minisymposia organized by the members of RGANN should
also be mentioned. After 2005 five minisymposia, devoted to ANNs and soft computing methods
were organized at ECCC 2006 in Lisbon, Portugal; CCM 2009, Zielona Góra, Poland; ECCM 2010,
Paris, France; and CMM2011, Warsaw, Poland.
All the members of RGANN from the Rzeszów UT, Poland, participated in the organization of

three scientific conferences in Poland. These conferences were: ECCOMAS Thematic Conferences
on the Inverse Problems of Mechanics IPM2009 and IPM2011 in Łańcut and Sieniawa, see [75, 76]
and the 57th Conference on Civil Engineering, Krynica 2011, see[74]. At this conference the Special
Session devoted to ANN applications in CE took place and the presented papers are now published
in the CAMES Special Issue. Altogether 29 papers (fifteen were prepared for the Krynica Special
Session) were presented at these conferences by the members of the RGANN group.
In the final part of the paper let me mention the promotion activity of ANNs by the participants

in very prestigious lectures delivered at the Centre International des Sciences Mécaniques in Udine,
Italy. In 2007 the Advanced CISM School on Soft Computing was organized byWaszczyszyn who to-
gether with Słoński delivered a series of lectures [67], published in the book [62] under Waszczyszyn’s
edition. In this way the teaching activity, originated in Udine in 1998 and continued in 2003, see
books [36, 62], have continued the promotion of ANNs.
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5. FINAL REMARKS AND SOME CONCLUSIONS ON RESEARCH AND TEACHING
ACTIVITIES ON ANN APPLICATIONS IN CE AFTER 2005

1. Two D.Sc.E. monographs and eight Ph.D. Theses were “defended”.

2. From among new results in the area of ANNs development the following research are worth
emphasizing:

• applications of Bayesian Neural Networks and Bayesian methods in design and learning of
neural networks;

• Recurrent Cascade Neural Network, as a new network with promising features for identifi-
cation analysis, needs further research;

• Principal Component Transformation and PCA (PC Analysis) can be applied not only for
compression of input data but also for improving the accuracy of neural approximations.

3. ANNs have been successfully used in new areas of their applications, i.e. in geotechnics and
geodesy.

4. Research on combining ANNs with measurement techniques are under successive development
at the Rzeszów UT. The main targets of this activity are new non-destructive methods in the
area of structure health monitoring, diagnosis and repair.

5. The dominating effort has been devoted to development of hybrid computational systems and
their applications in different CE problems. The system FEM/CNN/EMP of very high degree of
component fusion is worth emphasizing. Formulation of other systems FEM&ANN and EMP&
RCNN of low degree of fusion leads to numerically efficient systems for simulation and identifi-
cation of special problems of CE.

6. In the years 2006-2011 a number of activities have been continued. Besides the teaching of
young researches, e.g. an Advanced CISM Course organized in Udine, Italy, in 2007 also new
scientific conferences were organized after 2005, i.e. ECCOMAS Thematic Conferences on Inverse
Problems of Mechanics IPM 2009 and IPM 2011 in Łańcut and Sieniawa near Rzeszów, Poland.

ACKNOWLEDGMENTS

The author would like to acknowledge financial support from the Polish Ministry of Science and
Higher Education, Grant No N NN506 4326 36, “Joining of artificial neural networks and Bayesian
reasoning for the analysis of identification problems in structural dynamics and geotechnics”.

REFERENCES

[1] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, London, 1995.
[2] C.M. Bishop. Pattern Recognition and Machine Learning. Springer Science&Business Media, LLC, 2006.
[3] A. Borowiec. Detection of Damage in Structural Systems with Utilization of Changes in the Structure Models
(in Polish), Ph.D. Thesis. Rzeszów University of Technology, 2008.

[4] L. Buda-Ożóg. Diagnosis of Technical State of Concrete Elements by Means of Dynamic Tests (in Polish), Ph.D.
Thesis. Rzeszów University of Technology, 2007.

[5] H. Demuth, M. Beale. Neural Network Toolbox for Use with MATLAB. User’s Guide, Version 4, The Mathworks
Inc., 2000.

[6] M. Gajzler. Neural networks in the advisory system for repairs of industrial floor. Computer Assisted Mech. Eng.
Sci., 18(4): 255–263, 2011.

[7] J. Ghaboussi, D.A. Pecknold, M. Zhang, R.M. Haj-Ali. Autoprogressive training of neural network constitutive
models. Int. J. Num. Mech. Eng., 42: 105–126, 1998.

[8] J. Ghaboussi. Advances in neural networks in computational mechanics and engineering. In Ch. 4 of [62], 191–
237, 2010.



144 Z. Waszczyszyn

[9] J. Gil. Examples of Applications of Neural Networks in Geodesy (in Polish). Oficyna Wyd. Uniwersytetu
Zielonogórskiego, Zielona Góra, Poland, 2006.

[10] Y.M. Hashash, S. Jung, J. Ghaboussi. Numerical implementatrion of a neural network based material model in
finite element analysis. Int. J. Num. Mech. Eng., 59: 989–1005, 2004.

[11] S. Haykin. Neural Networks – A Comprehensible Foundations, 2nd edition. Prentice-Hall Upper Saddle River,
NJ, 1999.

[12] M. Jakubek. Application of Artificial Neural Networks to the Analysis of Selected Problems of Experimental
Mechanics of Structures and Materials (in Polish). Cracow University of Technology, Cracow, Poland, 2007.

[13] M. Jakubek. Fuzzy weight neural network in the analysis of concrete specimens and R/C column buckling tests.
Computer Assisted Mech. Eng. Sci., 18(4): 243–254, 2011.

[14] Ł. Kaczmarczyk. Numerical Analysis of Selected Problems of Nonhomogeneous Continua, (in Polish) Ph.D.
Thesis. Cracow University of Technology, Cracow, Poland, 2006.

[15] Ł. Kaczmarczyk, Z. Waszczyszyn. Identification of characteristic length of microstructure for second order con-
tinuum multiscale model by Bayesian neural networks, Computer Assisted Mech. Eng. Sci., 14: 183–196, 2007.

[16] J. Kaliszuk. Reliability Analysis of Structures and Structural Elements by Means of Artificial Neural Networks
(in Polish), Ph.D. Thesis. University of Zielona Góra, Poland, 2005.

[17] J. Kaliszuk. Hybrid Monte Carlo Method in the reliability analysis of structures. Computer Assisted Mech. Eng.
Sci., 18(3): 205–216, 2011.

[18] J. Kaliszuk, J. Marcinowski, Z. Waszczyszyn. Laboratory tests and numerical modelling of large displacements
of an elasto-plastic cylindrical shell. In: W. Pietraszkiewicz, Cz. Szymczak [Eds.], Shell Structures: Theory and
Applications, 477–480. Taylor & Francis Group, 2005.

[19] A. Krok. The analysis of Selected Problems of Mechanics of Structures and Materials by ANNs and Kalman
Filters (in Polish), Ph.D. Thesis. Cracow University of Technology, Cracow, Poland, 2007.

[20] A. Krok. An improved Neural Kalman Filtering Algorithm in the analysis of cyclic behaviour of concrete speci-
mens. Computer Assisted Mech. Eng. Sci., 18(4): 275–282, 2011.

[21] M. Kłos, M.J. Sulewska, Z. Waszczyszyn. Neural identification of compaction characteristics for granular soils.
Computer Assisted Mech. Eng. Sci., 18(4): 265–273, 2011.

[22] M. Kłos, Z. Waszczyszyn. Modal analysis and modified cascade neural networks in identification of geometrical
parameters of circular arches. Computers & Structures, 89: 581–589, 2011.

[23] K. Kuźniar. Analysis of Vibrations of Medium-Height Buildings with Load Bearing Walls Subjected to Min-
ing Tremors Using Neural Networks (in Polish), D.Sc. Dissertation, Monograph No. 310, Series on Structural
Engineering. Cracow University of Technology, Cracow, Poland, 2004.

[24] K. Kuźniar. Neural networks for the analysis of mine-induced building vibrations. Computer Assisted Mech.
Eng. Sci., 18(3): 147–159, 2011.

[25] K. Kuźniar, Z. Waszczyszyn. Neural networks and principal component analysis for identification of building
natural periods. J. Computing Civil Eng., 20(6): 431–441, 2006.

[26] K. Kuźniar, Z. Waszczyszyn. Neural Networks for the Simulation and Identification Analysis of Buildings Sub-
jected to Paraseismic Excitations. Ch.XVI in [27], 393–432, 2007.

[27] N. Lagaros and Y. Tsdompanakis [Eds.], Intelligent Computational Paradigms in Earthquake Engineering. Idea
Group. Hershey, PA, USA, 2007.

[28] C.-C.J. Lin, J. Ghaboussi. Generating multiple spectrum compatible accelerograms using neural networks. Int.
J. Earthquake Eng. Stru. Dynamics, 30: 1021–1042, 2001.

[29] W. Łakota. Detection and Localization of Damage in Beam Structures (in Polish). Oficyna Wyd. Politechniki
Rzeszowskiej, Rzeszów, 1999.

[30] D.J.C. MacKay. Bayesian interpolation. Neural Computation, 4(3): 415–447, 1992.
[31] B. Miller. Updating of a Mathematical Model of Structures to Physical Models (in Polish), Ph.D. Thesis. Rzeszów
University of Technology, 2001.

[32] B. Miller. Application of neural networks for structure updating. Computer Assisted Mech. Eng. Sci., 18(3):
191–203, 2011.

[33] B. Miller, Z. Waszczyszyn, L. Ziemiański. Identification of load parameters for an elastic-plastic beam basing on
dynamic characteristic changes. In: L. Rutkowski et al., Artificial Intelligence and Soft Computing, LNAI 6114,
P.II, 590–597. Springer, 2010.

[34] M. Mrówczyńska. The Accuracy and Efficiency of Mapping the Terrain by Using Neural Networks (in Polish),
Ph.D. Thesis. Warsaw University of Technology, Warsaw, Poland, 2005.

[35] M. Mrówczyńska. Neural networks and neuro-fuzzy systems applied to the analysis of selected problems of
geodesy. Computer Assisted Mech. Eng. Sci., 18(3): 161–173, 2011.

[36] Z. Mróz, G.E. Stavroulakis (Eds.). Parameter Identification of Materials and Structures, CISM Courses and
Lectures No. 404. Springer, Wien – New York, 2005.

[37] I.T. Nabney. Netlab – Algorithms for Pattern Recognition. Springer, London, 2004.
[38] P.Nazarko. Estimation of the Technical State of Structures and Detection of Their Damage (in Polish), Ph.D.
Thesis. Rzeszów University of Technology, 2008.



Artificial neural networks in civil engineering: another five years of research in Poland 145

[39] P. Nazarko. Assessment of Structures Technical State (in Polish). Oficyna Wyd. Politechniki Rzeszowskiej,
Rzeszów, 1999.

[40] P. Nazarko, L. Ziemiański. Application of artificial neural networks in the damage identification of structural
elements. Computer Assisted Mech. Eng. Sci., 18(3): 175–189, 2011.

[41] E. Pabisek. Hybrid Systems Integrating FEM and ANN in the Analysis of Selected Problems of Mechanics of
Structures and Materials (in Polish), D.Sc. Dissertation, Monograph No. 369, Series on Structural Engineering.
Cracow University of Technology, Cracow, Poland, 2008.

[42] E. Pabisek. Self-learning FEM/ANN approach to identification of equivalent material in real structures. Archives
of Civ. Eng., 54(2): 395–404, 2008.

[43] E. Pabisek. Self-learning FEM/ANN approach to identification of equivalent material models for plane stress
problems. Computer Assisted Mech. Eng. Sci., 15: 67–78, 2008.

[44] E. Pabisek. Identification of an equivalent model for granular soils by FEM/CNN/p-EMP hybrid system. Com-
puter Assisted Mech. Eng. Sci., 18(4): 283–290, 2011.

[45] E. Pabisek, M. Jakubek, and Z. Waszczyszyn. A fuzzy network for the analysis of experimental structural
engineering problems. In: L. Rutkowski and J. Kacprzyk [Eds.], Neural Networks and Soft Computing, 772–777.
Physica-Verlag, A Springer-Verlag Company, 2003.

[46] E. Pabisek, J. Kaliszuk, Z. Waszczyszyn. Neural and finite element analysis of a plane steel frame reliability by
the Classical Monte Carlo Method, In: L. Rutkowski et al., [Eds.]. Lecture Notes on Artificial Intelligence, LNAI
3070, 1081–1086. Springer-Verlag, Berlin - Heidelberg, 2004.

[47] T. Paez. Neural networks in mechanical system simulation, identification and assessment. Shock and Vibration,
1: 177–199, 1993.

[48] D.T. Pham, X. Liu. Neural Networks for Identification, Prediction and Control. Springer, 1995.
[49] G. Piątkowski. Detection of Damage in Structural Elements by Means of Artificial Neural Networks (in Polish),
Ph.D. Thesis. Rzeszów University of Technology, 2003.

[50] G. Piątkowski, Z. Waszczyszyn. Identification problems of Recurrent Cascade Neural Network application in
prediction of an additional mass location. Computer Assisted Mech. Eng. Sci., 18(3): 217–228, 2011.

[51] H.S. Shin, G.N. Pande. On self-learning finite element codes based on monitored response of structure. Computers
and Geotechnics, 27: 161–178, 2000.

[52] H.S. Shin, G.N. Pande. Identification of elastic constants for orthotropic materials from a structural test. Com-
puters and Geotechnics, 30: 571–577, 2003.

[53] M.J. Sulewska. Artificial Neural Networks in the Evaluation of Non-cohesive Soil Compaction Parameters (in
Polish). Proceedings in Civil Engineering No 64. Institute of Fundamental Technological Research, Warsaw –
Białystok, Poland 2009.

[54] M.J. Sulewska. Applying artificial neural networks for analysis of geotechnical problems. Computer Assisted
Mech. Eng. Sci., 18(4): 231–241, 2011.

[55] M. Słoński. Prediction of concrete fatigue durability using Bayesian neural networks. Computer Assisted Mec.
Eng. Sci., 12: 259–265, 2005.

[56] M. Słoński. Bayesian regression approaches in example of concrete fatigue failure prediction. Computer Assisted
Mec. Eng. Sci., 13: 655–668, 2006.

[57] M. Słonski. HPC strength prediction using Bayesian neural networks. Computer Assisted Mec. Eng. Sci., 14:
345–352, 2007.

[58] M. Słoński. A comparison of model selection methods for compressive strength prediction of high performance
concrete using neural networks. Computers & Structures, 88(21–22): 1248–1253, 2010.

[59] M. Słoński. Bayesian neural networks and Gauss Processes in identification of concrete properties. Computer
Assisted Mech. Eng. Sci., 18(4): 291–302, 2011.

[60] Z. Waszczyszyn [Ed.]. Neural Networks in the Analysis and Design of Structures. CISM Courses and Lectures
No. 404. Springer, Wien – New York, 1999.

[61] Z. Waszczyszyn. Artificial neural networks in civil and structural engineering. Ten years of research in Poland.
Computer Assisted Mech. Eng. Sci., 13: 489–512, 2006.

[62] Z. Waszczyszyn [Ed.]. Advances of Soft Computing in Engineering, CISM Courses and Lectures, vol. 512.
Springer, Wien – New York, 2010.

[63] Z. Waszczyszyn, M. Bartczak. Neural prediction of critical loads in compressed cylindrical shells with geometrical
imperfections, Non-linear Mechanics, 37: 763–775, 2003.

[64] Z. Waszczyszyn, M. Słoński. Bayesian neural networks for prediction of response spectra. Foundations Civil
Envir. Eng., 7: 343–361, 2006.

[65] Z. Waszczyszyn, M. Słoński. Criterion of maximum marginal likelihood instead of cross-validation method for de-
sign of artificial neural networks (in Polish). Proc. Rzeszów Univ. Technol., No 243, 173–185. Rzeszów University
of Technology, Rzeszów, 2007.

[66] Z. Waszczyszyn, M. Słoński. Maximum of Marginal Likelihood Criterion instead of Cross-Validation for designing
of artificial neural networks. In: L. Rutkowski et al., [Eds.]. Artificial Intelligence and Soft Computing – ICAISC
2008, LNAI 5097, 186–194. Springer, Berlin – Heidelberg – New York, 2008.



146 Z. Waszczyszyn

[67] Z. Waszczyszyn, M. Słoński. Selected problem of artificial neural networks development. Ch. 5 in [62], 237–316,
2010.

[68] Z. Waszczyszyn, L. Ziemiański. Neural networks in the identification analysis of structural mechanics problems.
Ch. 7 in: [36], 265–340, 205.

[69] Z. Waszczyszyn, L. Ziemiański. Neurocomputing in the analysis of selected inverse problems of mechanics of
structures and materials, Computer Assisted Mech. Eng. Sci., 13: 125–159, 2006.

[70] M. Wojciechowski. Feed-Forward Artificial Neural Networks and Their Derivatives - Application Possibilities in
Engineering and Geotechnics (in Polish), Ph.D. Thesis. Łódź University of Technology, 2009.

[71] M. Wojciechowski. Application of artificial neural network in soil parameter identification for deep excavation
numerical model. Computer Assisted Mech. Eng. Sci., 18(4): 303–311, 2011.

[72] L. Ziemiański. Neural Networks in Structural Dynamics (in Polish). Oficyna Wyd. Politechniki Rzeszowskiej,
Rzeszów, 1999.

[73] L. Ziemiański, B. Miller, G. Piątkowski. Application of neurocomputing to parametric identification using dy-
namical responses. Ch.15 in [27], 362–392, 2007.

[74] L. Ziemiański, A. Kozłowski, S. Woliński [Eds]. 57th Annual Conference onScientific Problems of Civil Engineer-
ing, Rzeszów-Krynica, 18–22 Sept. 2011. Proceedings, Special Session on ANN in Civil Engineering, 292–293.
Oficyna Wyd. Politechniki Rzeszowskiej, Rzeszów, 2011.

[75] ECCOMAS Thematic Conference IPM 2009. International Symposium on Inverses Problems in Mechanics of
Structures and Materials. Book of Abstracts, 23–25 April 2009, Rzeszów-Łańcut, Poland, 2009.

[76] ECCOMAS Thematic Conference IPM 2011. 2nd International Conference on Inverses Problems in Mechanics
of Structures and Materials. Conference Proceedings, 27–30 April 2011, Rzeszów-Sieniawa, Poland, 2011.


